263 research outputs found

    Identification of SH3 domain interaction partners of human FasL (CD178) by phage display screening

    Get PDF
    <p>Abstract</p> <p>Background -</p> <p>Fas ligand is a cytotoxic effector molecule of T and NK cells which is characterized by an intracellular N-terminal polyproline region that serves as a docking site for SH3 and WW domain proteins. Several previously described Fas ligand-interacting SH3 domain proteins turned out to be crucial for the regulation of storage, expression and function of the death factor. Recent observations, however, indicate that Fas ligand is also subject to posttranslational modifications including shedding and intramembrane proteolysis. This results in the generation of short intracellular fragments that might either be degraded or translocate to the nucleus to influence transcription. So far, protein-protein interactions that specifically regulate the fate of the intracellular fragments have not been identified.</p> <p>Results -</p> <p>In order to further define the SH3 domain interactome of the intracellular region of Fas ligand, we now screened a human SH3 domain phage display library. In addition to known SH3 domains mediating binding to the Fas ligand proline-rich domain, we were able to identify a number of additional SH3 domains that might also associate with FasL. Potential functional implications of the new binding proteins for the death factor's biology are discussed. For Tec kinases and sorting nexins, the observed interactions were verified in cellular systems by pulldown experiments.</p> <p>Conclusion -</p> <p>We provide an extended list of putative Fas ligand interaction partners, confirming previously identified interactions, but also introducing several novel SH3 domain proteins that might be important regulators of Fas ligand function.</p

    Measuring the electrical impedance of mouse brain tissue

    Get PDF
    We report on an experimental method to measure conductivity of cortical tissue. We use a pair of 5mm diameter Ag/AgCl electrodes in a Perspex sandwich device that can be brought to a distance of 400 microns apart. The apparatus is brought to uniform temperature before use. Electrical impedance of a sample is measured across the frequency range 20 Hz-2.0 MHz with an Agilent 4980A four-point impedance monitor in a shielded room. The equipment has been used to measure the conductivity of mature mouse brain cortex in vitro. Slices 400 microns in thickness are prepared on a vibratome. Slices are bathed in artificial cerebrospinal fluid (ACSF) to keep them alive. Slices are removed from the ACSF and sections of cortical tissue approximately 2 mm times 2 mm are cut with a razor blade. The sections are photographed through a calibrated microscope to allow identification of their cross-sectional areas. Excess ACSF is removed from the sample and the sections places between the electrodes. The impedance is measured across the frequency range and electrical conductivity calculated. Results show two regions of dispersion. A low frequency region is evident below approximately 10 kHz, and a high frequency dispersion above this. Results at the higher frequencies show a good fit to the Cole-Cole model of impedance of biological tissue; this model consists of resistive and non-linear capacitive elements. Physically, these elements are likely to arise due to membrane polarization and migration of ions both intra- and extra-cellularly.http://www.iupab2014.org/assets/IUPAB/NewFolder/iupab-abstracts.pd

    Posttranslational regulation of Fas ligand function

    Get PDF
    The TNF superfamily member Fas ligand acts as a prototypic death factor. Due to its ability to induce apoptosis in Fas (APO-1, CD95) expressing cells, Fas ligand participates in essential effector functions of the immune system. It is involved in natural killer cell- and T cell-mediated cytotoxicity, the establishment of immune privilege, and in termination of immune responses by induction of activation-induced cell death. In addition, Fas ligand-positive tumours may evade immune surveillance by killing Fas-positive tumour-infiltrating cells. Given these strong cytotoxic capabilities of Fas ligand, it is obvious that its function has to be strictly regulated to avoid uncontrolled damage. In hematopoietic cells, the death factor is stored in secretory lysosomes and is mobilised to the immunological synapse only upon activation. The selective sorting to and the release from this specific lysosomal compartment requires interactions of the Fas ligand cytosolic moiety, which mediates binding to various adapter proteins involved in trafficking and cytoskeletal reorganisation. In addition, Fas ligand surface expression is further regulated by posttranslational ectodomain shedding and subsequent regulated intramembrane proteolysis, releasing a soluble ectodomain cytokine into the extracellular space and an N-terminal fragment with a potential role in intracellular signalling processes. Moreover, other posttranslational modifications of the cytosolic domain, including phosphorylation and ubiquitylation, have been described to affect various aspects of Fas ligand biology. Since FasL is regarded as a potential target for immunotherapy, the further characterisation of its biological regulation and function will be of great importance for the development and evaluation of future therapeutic strategies

    A continuum model for the dynamics of the phase transition from slow-wave sleep to REM sleep

    Get PDF
    Previous studies have shown that activated cortical states (awake and rapid eye-movement (REM) sleep), are associated with increased cholinergic input into the cerebral cortex. However, the mechanisms that underlie the detailed dynamics of the cortical transition from slow-wave to REM sleep have not been quantitatively modeled. How does the sequence of abrupt changes in the cortical dynamics (as detected in the electrocorticogram) result from the more gradual change in subcortical cholinergic input? We compare the output from a continuum model of cortical neuronal dynamics with experimentally-derived rat electrocorticogram data. The output from the computer model was consistent with experimental observations. In slow-wave sleep, 0.5–2-Hz oscillations arise from the cortex jumping between “up” and “down” states on the stationary-state manifold. As cholinergic input increases, the upper state undergoes a bifurcation to an 8-Hz oscillation. The coexistence of both oscillations is similar to that found in the intermediate stage of sleep of the rat. Further cholinergic input moves the trajectory to a point where the lower part of the manifold in not available, and thus the slow oscillation abruptly ceases (REM sleep). The model provides a natural basis to explain neuromodulator-induced changes in cortical activity, and indicates that a cortical phase change, rather than a brainstem “flip-flop”, may describe the transition from slow-wave sleep to REM

    Review of Low Voltage Load Forecasting: Methods, Applications, and Recommendations

    Full text link
    The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.Comment: 37 pages, 6 figures, 2 tables, review pape

    Measuring the bulk impedance of brain tissue in vitro

    Get PDF
    Theoretical and numerical models of brain activity suggest a link between seizures and electrical connectivity. We have therefore been motivated to measure electrical conductivity in brain tissue. Such measurements in vitro are difficult; it is necessary to use a conductive inorganic salt solution, artificial cerebrospinal fluid (ACSF), to keep the tissue alive. We have attempted to provide a robust method to make such measurements. Mouse brain tissue was sliced (400 μm) using established methods. Half the slices were placed in standard ACSF; half were placed in ACSF devoid of magnesium ions. The latter case promotes seizure activity. Electrical activity was measured with a tungsten electrode at various places on the slices. Sixty-nine samples of cortex (2 mm × 2 mm) were cut with a razor. Their areas were measured with a calibrated microscope. Each sample was placed between two flat Ag/AgCl electrodes in a Perspex sandwich. Excess ACSF was removed with filter paper. The impedance was measured at 25°C from 20 Hz to 2 MHz with an Agilent E4980A four-point impedance meter in a shielded room, using a low current. Between 1 kHz and 100 kHz the conductivity was approximately 0.2 S m⁻¹; outside this range dispersion occurred. Samples prepared in the magnesium-free ACSF had a conductivity about 10% lower. The Cole-Cole model of conductivity was fitted. There were few significant differences between the parameters for the different groups measured

    Pulsatile ex vivo perfusion of human saphenous vein grafts under controlled pressure conditions increases MMP-2 expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of human saphenous vein grafts (HSVGs) as a bypass conduit is a standard procedure in the treatment of coronary artery disease while their early occlusion remains a major problem.</p> <p>Methods</p> <p>We have developed an <it>ex vivo </it>perfusion system, which uses standardized and strictly controlled hemodynamic parameters for the pulsatile and non-static perfusion of HSVGs to guarantee a reliable analysis of molecular parameters under different pressure conditions. Cell viability of HSVGs (n = 12) was determined by the metabolic conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) into a purple formazan dye.</p> <p>Results</p> <p>Under physiological flow rates (10 mmHg) HSVGs remained viable for two weeks. Their exposure to arterial conditions (100 mmHg) was possible for one week without important reduction in viability. Baseline expression of matrix metalloproteinase-2 (MMP-2) after venous perfusion (2.2 ± 0.5, n = 5) was strongly up-regulated after exposure to arterial conditions for three days (19.8 ± 4.3) or five days (23.9 ± 6.1, p < 0.05). Zymographic analyses confirmed this increase on the protein level. Our results suggest that expression and activity of MMP-2 are strongly increased after exposure of HSVGs to arterial hemodynamic conditions compared to physiological conditions.</p> <p>Conclusion</p> <p>Therefore, our system might be helpful to more precisely understand the molecular mechanisms leading to an early failure of HSVGs.</p

    Design and demonstration in vitro of a mouse-specific Transcranial Magnetic Stimulation coil

    Get PDF
    Background. Transcranial Magnetic Stimulation (TMS) is a technique used to treat different neurological disorders non-invasively. A pulsed current to a coil generates a magnetic field (B-field) which induces an electric field (E-field). Underlying biophysical effects of TMS are unclear. Therefore, animal experiments are needed; however, making small TMS coils suitable for mice is difficult and their field strengths are typically much lower than for human sized coils. Objectives/Hypothesis. We aimed to design and demonstrate a mouse-specific coil that can generate high and focused E-field. Methods. We designed a tapered TMS coil of 50 turns of 0.2 mm diameter copper wire around a 5 mm diameter tapered powdered iron core and discharged a 220 μF capacitor at 50 V through it. We measured B-field with a Hall probe and induced E-field with a wire loop. We measured temperature rise with a thermocouple. We applied 1200 pulses of continuous theta burst stimulation (cTBS) and intermittent theta burst stimulation (iTBS) to mouse brain slices and analysed how spontaneous electrical activity changed. Results. The coil gave maximum B-field of 685 mT at the base of the coil and 340 mT at 2 mm below the coil, and maximum E-field 2 mm below the coil of approximately 10 V/m, at 50 V power supply, with a temperature increase of 20 degrees after 1200 pulses of cTBS. We observed no changes in B-field with heating. cTBS reduced frequency of spontaneous population events in mouse brain slices up to 20 minutes after stimulation and iTBS increased frequency up to 20 minutes after stimulation. No frequency changes occurred after 20 minutes. No changes in amplitude of spontaneous events were found. Conclusion. The design generated fields strong enough to modulate brain activity in vitro
    corecore